
THE SAMGRID DATABASE SERVER COMPONENT: ITS UPGRADED
INFRASTRUCTURE AND FUTURE DEVELOPMENT PATH

L. Loebel-Carpenter, S. White, A. Baranovski, G. Garzoglio, R. Herber, R. Illingworth, R.
Kennedy, A. Kreymer, A. Kumar, L. Lueking, A. Lyon, W. Merritt, I. Terekhov, J. Trumbo, S.
Veseli, FNAL, Batavia, IL 60510, USA, M. Burgon-Lyon, R. StDenis, Glasgow University, S.

Belforte, INFN, Trieste, U. Kerzel, Karlsruhe University, V. Bartsch, M. Leslie, S. Stonjek, Oxford
University, F. Ratnikov, Rutgers University, A.Sill, Texas Tech University

Abstract

The SAMGrid Database Server encapsulates several

important services, such as accessing file metadata and
replica catalog, keeping track of the processing
information, as well as providing the runtime support for
SAMGrid station services. Recent deployment of the
SAMGrid system for CDF has resulted in unification of
the database schema used by CDF and D0, and the
complexity of changes required for the unified metadata
catalog has warranted a complete redesign of the DB
Server.

We describe here the architecture and features of the

new server. In particular, we discuss the new CORBA
infrastructure that utilizes python wrapper classes around
IDL structs and exceptions. Such infrastructure allows us
to use the same code on both server and client sides,
which in turn results in significantly improved code
maintainability and easier development.

We also discuss future integration of the new server

with an SBIR II project which is directed toward allowing
the DB Server to access distributed databases,
implemented in different DB systems and possibly using
different schema.

INTRODUCTION
SAMGrid [1] is a general data handling system designed
to work for experiments with peta-byte sized datasets and
widely distributed production and analysis facilities. It
offers a wide variety of services, including those for data
transfer, storage and management, as well as for process
bookkeeping on distributed systems. The system is used
by D0 and CDF, and is being tested for use by MINOS
and CMS.
DB Server Role in the SAMGrid System

Since its beginnings, the SAMGrid system has been
using central Oracle RDBMS. Most of the
communication with the database is done via a number of
CORBA-based DB Servers, which encapsulate the
SAMGrid cataloguing services (i.e., access to file
metadata, event and replica catalog), dataset services (i.e.,
planning, creating, and manipulating user dataset

definitions*). DB Servers also provide process accounting
services, as well as the runtime support for SAMGrid
station services† (e.g., file delivery and storage). The
scope of these services alone indicates importance of the
DB Server in the SAMGrid system. We further illustrate
this in Figure 1, which shows the number of queries
generated weekly by the D0 SAMGrid DB Servers over
the period of three months (June-August ’04). During this

Figure 1: Number of DB queries generated weekly by the
D0 SAMGrid DB Servers (June-August ’04).

period, there were more than 250 million DB queries
generated (on the average about 18 million queries per
week).

PROBLEMS WITH EXISTING
INFRASTRUCTURE

Even though the old DB server code has served the

SAMGrid system well in the past, a number of problems
related to code maintenance, development, and server
performance, have accumulated over the years. As the
data handling system developed, the DB server code base

* SAMGrid Dataset definition denotes a specification of file metadata,
which is resolved to a list of files upon user request.
† Station denotes a particular set of hardware resources that are managed
by SAMGrid servers. End users request a set of files by submitting a
SAMGrid project to one of the SAMGrid stations. Their applications are
served input files by the project manager (one of the station servers).

FERMILAB-CONF-04-465-CD

grew to about 27000 lines of python code with about 350
CORBA IDL methods defined and implemented. A large
part of that code (about 60%) became obsolete and
unused at some point. However, removing or modifying
any given piece of the old code is fairly difficult, so that
bug fixes often introduce a completely new set of
problems that are not caught by our testing procedures.
For this reason, any DB schema changes that were driven
by experiments’ requirements were not easy to implement
regardless of their scope.

Another significant issue is related to performance. The

existing server code is single threaded, so any long
database query causes the DB Server to stop responding
to client requests, which often leads to CORBA
communication errors on the client side. Although we
managed to partially mitigate this issue by using multiple
DB Servers that are handling requests for different sets of
clients,‡ this problem still occurs rather frequently.

NEW DB SERVER DESIGN AND

FEATURES

Adoption of SAMGrid as the data handling system for
CDF [2,3] has resulted in significant DB schema changes
required to fully replace functionality embedded in the
CDF Data File Catalog. Among other things, the
description of file metadata has been redesigned in order
to satisfy requirements of both D0 and CDF experiments.
These schema changes, together with numerous problems
with the existing server code, have led to the decision to
update the DB Server infrastructure.

In addition to updating the treatment of file metadata,

our primary goals in redesigning the DB Server were
improved code maintainability, easier development, and
improved server performance. At the same time we have
kept some of the key pieces of the old infrastructure:
python as the implementation language, CORBA as the
communication protocol§, and the automatic server base
generation by the DB Server Generator [4]. The main
features of the updated infrastructure are shown in Figure
2 and described in the following subsections.

‡ For example, at the moment the D0 production system uses 9 different
DB Servers
§ Note that in the new DB Server we have made a transition from Fnorb
[5] to omniORB [6].

Figure 2: SAMGrid DB Server Architecture.

File Metadata

One of the main goals of the DB Server upgrade was
updating the treatment of the file metadata. The old
system of declaring files was outdated, and unable to cope
with changing experiment needs. This was completely
redesigned and aligned with the latest DB schema
changes [3]. In the new system, file metadata is described
as dictionaries (keyword-value pairs), but each different
type of file has a certain set of required parameters that
have to be present in the metadata. This not only allows
us to enforce experiment requirements (these are
configurable on a per-experiment basis), but it also gives
us flexibility to handle any type of metadata and to easily
adapt to any possible changes in the future.

CORBA Interfaces

All of the existing IDL interfaces have been redesigned
and reorganized so that they closely match the services
which DB Server provides. At the same time, we have
also introduced several new administrative interfaces for
updating the SAMGrid DB. This will, for example, allow
configuration of the SAMGrid station software before or
during the installation phase, so that the station
installation procedure can be fully automated. The current
list of the most important interfaces is given bellow:

• Station Interface (run-time station support)
• Project Interface (run-time project support,

process bookkeeping)
• Dataset Interface (manipulation of user datasets)
• Datafile Interface (metadata and replica catalog)
• Admin Interface (DH administration services)
• Station Admin Interface (station configuration and

administration)
• Datalogger Interface (Online services)
• User Interface (VO management services)
• Autdodestinations Interface (file storage support)

CORBA Infrastructure

We have built a layer of code (CORBA Wrapper

Classes) on top of the ORB-generated structs and
exceptions with the purpose of shielding the developers
from having to manipulate those directly. The wrapper
classes can be initialized in a number of ways and used
just like any other python (C++) class, and can be cast
into the corresponding CORBA representation. In this
way, creating, receiving, and sending CORBA structs (or
throwing/catching CORBA exceptions) is done
automatically in both server and client code.

This infrastructure clearly promotes greater code
maintainability, easier development and code re-use. For
example, our new python API uses the same
infrastructure code that is used by the DB Server, and
both client and server code is to a certain extent isolated
from any future IDL changes.

DB Server Generator

While its CORBA interfaces and infrastructure have
undergone significant modifications and improvements,
one piece of the DB Server architecture has not changed:
automatic generation of the core (DB-derived) classes
using the DB Server Generator. As their name suggests,
each of those classes corresponds to one database table,
and can be used to easily query or modify that table. This,
however, does not completely isolate the rest of the DB
Server code from talking directly to the database for those
cases where table joins are needed.

Multithreading

Addition of multithreading will have significant impact
on the new DB Server and overall DH system
performance. This will completely eliminate problems of
client requests timing out because the server is waiting on
completion of a complex database query requested earlier.

OUTSTANDING ISSUES

At the moment there are a several outstanding issues
with the new DB Server that are still being worked on.
One of them is the impact of the new CORBA
infrastructure with respect to the server performance. In
most cases the additional overhead related to CORBA
wrappers is not significant. However, creating large lists
(on the order of 1000 or more) of objects (e.g., list of files
in a dataset, or list of files cached on a given station) has a
noticeable effect on overall DB Server performance.

We have not completely finished transferring all the

functionality of the current DB server into the new
version. The current system includes support for 'request
systems' which allow users to enter job specifications into
the database for later extraction by the data handling

system to create local or grid job submissions. The
request system parts of the schema are being revisited and
hence the reimplementation of this support in the DB
server has not yet been undertaken.

DEPLOYMENT PATH

The scope of changes in the SAMGrid software that is
related to the DB Server upgrade is enormous: the DB
Server itself was redesigned, our python API was
rewritten to make use of the new common infrastructure,
new infrastructure was developed for the station software,
etc. Clearly, deployment of such changes into a
production system without major disruptions to users is a
difficult task. Our approach to this problem is
deployment in three phases. In the first phase, which was
completed in June ’04, we upgraded the experiments’ (D0
and CDF) production databases to the latest DB schema.
Since the schema changes were not backwards compatible
with the existing DB Server, the old server software had
to be patched in order to function properly. The second
phase (ongoing at the moment), involves deploying new
DB Server in parallel to the existing infrastructure, as
well as installing new client and station software to
several sites for testing. In the third phase (planned for
October ‘04) we’ll start gradually upgrading the main
production stations with the new software. The important
point is that this upgrade will be incremental, so that its
impact on both users and the DH system itself should be
minimal.

INTEGRATION WITH SBIR II

As mentioned in the introduction, at the moment the
SAMGrid database is centralized. Although performance
of the Oracle DB has been very good in the past,
centralized DB is nevertheless a single point of failure in
the system. For this reason we are currently investigating
various possibilities for database replication. One of those
possibilities is integration of our DB Server with SBIR II
project [7], which strives to provide access to distributed
databases with a single query. In collaboration with SBIR
II developers we are working on interfaces which will
allow us to plug different query mechanisms into our
code.

CONCLUSIONS

In this paper we discussed recent upgrade of the

SAMGrid DB Server. We described the design and
features of the new server architecture, which we believe
will significantly improve performance of the entire DH
system. We also outlined our plan for deployment into
production, which is expected later this year.

ACKNOWLEDGEMENTS
We would like to thank Fermilab Computing Division

for its ongoing support of the SAMGrid project, and
especially the CCF, CEPA, and Run II Departments. We
would also like to thank everyone at D0 and CDF who
has contributed to this project. This project is sponsored
by DOE contract No. DE-AC02-76CH03000.

REFERENCES
[1] http://projects.fnal.gov/samgrid
[2] D. Bonham et.al, “Adapting SAM for CDF”,

Proceedings of the 2003 Conference for Computing
in High-Energy and Nuclear Physics (CHEP 03), La
Jolla, California, 24-28 Mar 2003.

[3] A. Lyon, et.al., “New SAM Schema at D0:
Description and Requirements”, ,http://www-
d0.fnal.gov/~lyon/samSchema/v03/SamNewSchema
Doc.pdf

[4] http://d0db.fnal.gov/db_server_gen/
[5] http://sourceforge.net/projects/fnorb
[6] http://omniorb.sourceforge.net
[7] M. Vranicar, “A Database Grid Solution”, SBIR

Phase II Proposal.

http://projects.fnal.gov/samgrid
http://d0db.fnal.gov/db_server_gen/
http://sourceforge.net/projects/fnorb

	THE SAMGRID DATABASE SERVER COMPONENT: ITS UPGRADED INFRASTR
	INTRODUCTION
	OUTSTANDING ISSUES
	DEPLOYMENT PATH
	INTEGRATION WITH SBIR II
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

